4.7 Article

New look at the QCD ground state in a magnetic field

期刊

PHYSICAL REVIEW D
卷 89, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.89.085034

关键词

-

资金

  1. DOE [DE-SC0002179]
  2. UTEP-COURI grant
  3. U.S. Department of Energy (DOE) [DE-SC0002179] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

We explore chiral symmetry breaking in a magnetic field within a Nambu-Jona-Lasinio model of interacting massless quarks including tensor channels. We show that the new interaction channels open up via Fierz identities due to the explicit breaking of the rotational symmetry by the magnetic field. We demonstrate that the magnetic catalysis of chiral symmetry breaking leads to the generation of two independent condensates, the conventional chiral condensate and a spin-one condensate. While the chiral condensate generates a dynamical fermion mass, the new condensate gives rise to a dynamical anomalous magnetic moment for the fermions. As a consequence, the spectrum of the excitations in all Landau levels, except the lowest one, exhibits Zeeman splitting. Since the pair, formed by a quark and an antiquark with opposite spins, possesses a resultant magnetic moment, an external magnetic field can align it giving rise to a net magnetic moment for the ground state. This is the physical interpretation of the spin-one condensate. Our results show that the magnetically catalyzed ground state in QCD is actually richer than previously thought. The two condensates contribute to the effective mass of the LLL quasiparticles in such a way that the critical temperature for chiral symmetry restoration becomes enhanced.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据