4.7 Article

Searching for gravitational-wave transients with a qualitative signal model: Seedless clustering strategies

期刊

PHYSICAL REVIEW D
卷 88, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.88.083010

关键词

-

资金

  1. United States National Science Foundation
  2. National Science Foundation [PHY-0757058]
  3. Winston Churchill Foundation of the United States

向作者/读者索取更多资源

Gravitational-wave bursts are observable as bright clusters of pixels in spectrograms of strain power. Clustering algorithms can be used to identify candidate gravitational-wave events. Clusters are often identified by grouping together seed pixels in which the power exceeds some threshold. If the gravitational-wave signal is long-lived, however, the excess power may be spread out over many pixels, none of which are bright enough to become seeds. Without seeds, the problem of detection through clustering becomes more complicated. In this paper, we investigate seedless clustering algorithms in searches for long-lived narrow-band gravitational-wave bursts. Using four astrophysically motivated test waveforms, we compare a seedless clustering algorithm to two algorithms using seeds. We find that the seedless algorithm can detect gravitational-wave signals (at a fixed false-alarm and false-dismissal rate) at distances between 1.5-2x those achieved with the seed-based clustering algorithms, corresponding to significantly increased detection volumes: 4.2-7.4x. This improvement in sensitivity may extend the reach of second-generation detectors such as Advanced LIGO and Advanced Virgo deeper into astrophysically interesting distances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据