4.7 Article

Detecting binary neutron star systems with spin in advanced gravitational-wave detectors

期刊

PHYSICAL REVIEW D
卷 86, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.86.084017

关键词

-

资金

  1. NSF [PHY-0847611, PHY-0854812, PHY-0855589, PHY-1040231, PHY-0600953, PHY-1104371]
  2. Max Planck Gesellschaft
  3. Cottrell Scholar award from the Research Corporation for Science Advancement
  4. Direct For Mathematical & Physical Scien
  5. Division Of Physics [0855589] Funding Source: National Science Foundation
  6. Division Of Physics
  7. Direct For Mathematical & Physical Scien [1040231, 0854812, 847611] Funding Source: National Science Foundation

向作者/读者索取更多资源

The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars' angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, cJ/GM(2), are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method for constructing template banks for gravitational-wave searches for systems with spin. We present a new metric in a parameter space in which the template placement metric is globally flat. This new method can create template banks of signals with nonzero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximum signal-to-noise for only 9% (0.2%) of binary neutron star sources with dimensionless spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of spins in binary neutron stars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据