4.7 Article

Paradox of soft singularity crossing and its resolution by distributional cosmological quantities

期刊

PHYSICAL REVIEW D
卷 86, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.86.063522

关键词

-

资金

  1. OTKA grant [100216]
  2. RFBR Grant [11-02-00643]

向作者/读者索取更多资源

A cosmological model of a flat Friedmann universe filled with a mixture of anti-Chaplygin gas and dustlike matter exhibits a future soft singularity, where the pressure of the anti-Chaplygin gas diverges (while its energy density is finite). Despite infinite tidal forces the geodesics pass through the singularity. Because of the dust component, the Hubble parameter has a nonzero value at the encounter with the singularity, therefore the dust implies further expansion. With continued expansion however, the energy density and the pressure of the anti-Chaplygin gas would become ill-defined hence from the point of view of the anti-Chaplygin gas only a contraction is allowed. Paradoxically, the universe in this cosmological model would have to expand and contract simultaneously. This obviously could not happen. We solve the paradox by redefining the anti-Chaplygin gas in a distributional sense. Then a contraction could follow the expansion phase at the singularity at the price of a jump in the Hubble parameter. Although such an abrupt change is not common in any cosmological evolution, we explicitly show that the set of Friedmann, Raychaudhuri and continuity equations are all obeyed both at the singularity and in its vicinity. We also prove that the Israel junction conditions are obeyed through the singular spatial hypersurface. In particular we enounce and prove a more general form of the Lanczos equation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据