4.7 Article

Contrasting features of anisotropic loop quantum cosmologies: The role of spatial curvature

期刊

PHYSICAL REVIEW D
卷 85, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.85.044011

关键词

-

资金

  1. NSF [PHY1068743]
  2. Division Of Physics
  3. Direct For Mathematical & Physical Scien [1068743] Funding Source: National Science Foundation

向作者/读者索取更多资源

A characteristic feature of loop quantization of the isotropic and Bianchi-I spacetimes is the existence of universal bounds on the energy density and the expansion and shear scalars, independent of the matter content. We investigate the properties of these physical quantities in Bianchi-II and Bianchi-IX spacetimes, which have been recently loop quantized using the connection operator approach. Using the effective Hamiltonian approach, we show that for Bianchi-II spacetime the energy density and the expansion and shear scalars turn out to be bounded, albeit not by universal values. In Bianchi-IX spacetime, when the approach to the classical singularity is isotropic, the above physical quantities are bounded. In addition, for all other cases, where the approach to singularities is not isotropic and effective dynamics can be trusted, these quantities turn out to be finite. These results stand in sharp distinction to general relativity, where the above physical quantities are generically unbounded, leading to the breakdown of geodesic equations. In contrast to the isotropic and Bianchi-I models, we find the role of energy conditions for the Bianchi-II model and the inverse triad modifications for Bianchi-IX to be significant to obtain the above bounds. These results bring out subtle physical distinctions between (i) the quantization using holonomies over closed loops performed for isotropic and Bianchi-I models and (ii) the connection operator approach. We find that qualitative differences in physics exist for these quantization methods even for the isotropic models in the presence of spatial curvature. We highlight these important differences in the behavior of the expansion scalar in the holonomy based quantization and connection operator approach for isotropic spatially closed and open models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据