4.7 Article

Confronting MOND and TeVeS with strong gravitational lensing over galactic scales: An extended survey

期刊

PHYSICAL REVIEW D
卷 86, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.86.083507

关键词

-

资金

  1. London Centre for Terauniverse Studies (LCTS)
  2. European Research Council via the Advanced Investigator Grant [267352]
  3. STFC (UK)
  4. Science and Technology Facilities Council [ST/J002798/1, ST/H00260X/1] Funding Source: researchfish
  5. STFC [ST/J002798/1, ST/H00260X/1] Funding Source: UKRI

向作者/读者索取更多资源

The validity of modified Newtonian dynamics (MOND) and tensor vector scalar (TeVeS) models of modified gravity has been recently tested by using lensing techniques, with the conclusion that a nontrivial component in the form of dark matter is needed in order to match the observations. In this work, those analyses are extended by comparing lensing to stellar masses for a sample of nine strong gravitational lenses which probe galactic scales. The sample is extracted from a recent work which presents the mass profile out to a few effective radii, therefore reaching into regions which are dominated by dark matter in the standard (general relativity) scenario. A range of interpolating functions are explored to test the validity of MOND/TeVeS in these systems. Out of the nine systems, there are five robust candidates with a significant excess (higher than 50%) of lensing mass with respect to stellar mass, irrespective of the stellar initial mass function. One of these lenses (Q0957) is located at the center of a galactic cluster. This system might be accommodated in MOND/TeVeS via the addition of a hot component, like a 2 eV neutrino, which contributes over cluster scales. However, the other four robust candidates (LBQS1009, HE1104, B1600, HE2149) are located in field/group regions, so that a cold component (cold dark matter) would be required even within the MOND/TeVeS framework. Our results, therefore, do not support recent claims that these alternative scenarios to cold dark matter can survive astrophysical data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据