4.7 Article

Optimizing future experimental probes of inflation

期刊

PHYSICAL REVIEW D
卷 83, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.83.043502

关键词

-

资金

  1. World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan
  2. Japan Society for Promotion of Science (JSPS) [21740167]
  3. Arizona State University Foundation
  4. National Science Foundation [PHY05-51164]
  5. Grants-in-Aid for Scientific Research [21740167] Funding Source: KAKEN

向作者/读者索取更多资源

The discovery of many novel realizations of the inflationary universe paradigm has led to a degeneracy problem: many different inflationary Lagrangians generate the same perturbation spectra. Resolving this problem requires the future discovery of additional observables beyond the scalar adiabatic and tensor two-point functions on CMB scales. One important source of degeneracy arises in models where the density perturbation is generated by a noninflationary degree of freedom, for example, through curvatons or modulated reheating. We consider the curvaton scenario as representative of this class, and analyze the degeneracy with single field, canonical inflation that results if the curvaton goes undetected by future observations. We perform Monte Carlo potential reconstructions in the absence of distinguishing observables, such as non-Gaussiantities or isocurvature modes. The resulting degeneracy is considerable and the improved measurements of spectral parameters from future probes like CMBPol offer little to better the situation. Given a degeneracy-breaking observation, the observables must still be inverted to obtain the inflationary potential, with different observations resulting in reconstructions of varying quality. We find that a future detection of isocurvature modes or a precision measurement of the tensor spectral index will enable the most successful reconstructions in the presence of curvatons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据