4.7 Article

Accurate evolutions of inspiralling and magnetized neutron stars: Equal-mass binaries

期刊

PHYSICAL REVIEW D
卷 83, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.83.044014

关键词

-

资金

  1. DFG [SFB/Transregio 7]
  2. European Science Foundation
  3. JSPS [19-07803]
  4. MEXT [22740163]
  5. NASA [NNX09AI75G]
  6. Grants-in-Aid for Scientific Research [22740163] Funding Source: KAKEN
  7. NASA [NNX09AI75G, 117537] Funding Source: Federal RePORTER

向作者/读者索取更多资源

By performing new, long and numerically accurate general-relativistic simulations of magnetized, equal-mass neutron-star binaries, we investigate the role that realistic magnetic fields may have in the evolution of these systems. In particular, we study the evolution of the magnetic fields and show that they can influence the survival of the hypermassive neutron star produced at the merger by accelerating its collapse to a black hole. We also provide evidence that, even if purely poloidal initially, the magnetic fields produced in the tori surrounding the black hole have toroidal and poloidal components of equivalent strength. When estimating the possibility that magnetic fields could have an impact on the gravitational-wave signals emitted by these systems either during the inspiral or after the merger, we conclude that for realistic magnetic-field strengths B <= 10(12) G such effects could be detected, but only marginally, by detectors such as advanced LIGO or advanced Virgo. However, magnetically induced modifications could become detectable in the case of small-mass binaries and with the development of gravitational-wave detectors, such as the Einstein Telescope, with much higher sensitivities at frequencies larger than approximate to 2 kHz.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据