4.7 Article

N-body simulations for coupled scalar-field cosmology

期刊

PHYSICAL REVIEW D
卷 83, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.83.024007

关键词

-

资金

  1. European Community
  2. STFC [ST/G000581/1, ST/F002998/1, ST/I002006/1, ST/H008586/1, ST/J000434/1] Funding Source: UKRI
  3. Science and Technology Facilities Council [ST/I002006/1, ST/F002998/1, ST/H008586/1, ST/G000581/1, ST/J000434/1] Funding Source: researchfish

向作者/读者索取更多资源

We describe in detail the general methodology and numerical implementation of consistent N-body simulations for coupled-scalar-field models, including background cosmology and the generation of initial conditions (with the different couplings to different matter species taken into account). We perform fully consistent simulations for a class of coupled-scalar-field models with an inverse power-law potential and negative coupling constant, for which the chameleon mechanism does not work. We find that in such cosmological models the scalar-field potential plays a negligible role except in the background expansion, and the fifth force that is produced is proportional to gravity in magnitude, justifying the use of a rescaled gravitational constant G in some earlier N-body simulation works for similar models. We then study the effects of the scalar coupling on the nonlinear matter power spectra and compare with linear perturbation calculations to see the agreement and places where the nonlinear treatment deviates from the linear approximation. We also propose an algorithm to identify gravitationally virialized matter halos, trying to take account of the fact that the virialization itself is also modified by the scalar-field coupling. We use the algorithm to measure the mass function and study the properties of dark-matter halos. We find that the net effect of the scalar coupling helps produce more heavy halos in our simulation boxes and suppresses the inner (but not the outer) density profile of halos compared with the Lambda CDM prediction, while the suppression weakens as the coupling between the scalar field and dark-matter particles increases in strength.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据