4.7 Article

Weak gravitational lensing as a method to constrain unstable dark matter

期刊

PHYSICAL REVIEW D
卷 82, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.82.123507

关键词

-

资金

  1. University of Pittsburgh, the National Science Foundation [PHY 0968888]
  2. Division Of Astronomical Sciences
  3. Direct For Mathematical & Physical Scien [0806367] Funding Source: National Science Foundation
  4. Division Of Physics
  5. Direct For Mathematical & Physical Scien [0968888] Funding Source: National Science Foundation

向作者/读者索取更多资源

The nature of the dark matter remains a mystery. The possibility of an unstable dark matter particle decaying to invisible daughter particles has been explored many times in the past few decades. Meanwhile, weak gravitational lensing shear has gained a lot of attention as a probe of dark energy, though it was previously considered a dark matter probe. Weak lensing is a useful tool for constraining the stability of the dark matter. In the coming decade a number of large galaxy imaging surveys will be undertaken and will measure the statistics of cosmological weak lensing with unprecedented precision. Weak lensing statistics are sensitive to unstable dark matter in at least two ways. Dark matter decays alter the matter power spectrum and change the angular diameter distance-redshift relation. We show how measurements of weak lensing shear correlations may provide the most restrictive, model-independent constraints on the lifetime of unstable dark matter. Our results rely on assumptions regarding nonlinear evolution of density fluctuations in scenarios of unstable dark matter and one of our aims is to stimulate interest in theoretical work on nonlinear structure growth in unstable dark matter models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据