4.7 Article

Multipoint propagators for non-Gaussian initial conditions

期刊

PHYSICAL REVIEW D
卷 82, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.82.083507

关键词

-

资金

  1. French Programme National de Cosmology
  2. French Agence Nationale de la Recherche [BLAN07- 1-212615]
  3. Spanish Ministerio de Ciencia e Innovacion (MICINN) [AYA2009-13936, CSD2007-00060]
  4. Juan de la Cierva program
  5. Generalitat de Catalunya [2009SGR1398]
  6. European Commission

向作者/读者索取更多资源

We show here how renormalized perturbation theory calculations applied to the quasilinear growth of the large-scale structure can be carried on in presence of primordial non-Gaussian (PNG) initial conditions. It is explicitly demonstrated that the series reordering scheme proposed in Bernardeau, Crocce, and Scoccimarro [Phys. Rev. D 78, 103521 (2008)] is preserved for non-Gaussian initial conditions. This scheme applies to the power spectrum and higher-order spectra and is based on a reorganization of the contributing terms into the sum of products of multipoint propagators. In case of PNG, new contributing terms appear, the importance of which is discussed in the context of current PNG models. The properties of the building blocks of such resummation schemes, the multipoint propagators, are then investigated. It is first remarked that their expressions are left unchanged at one-loop order irrespective of statistical properties of the initial field. We furthermore show that the high-momentum limit of each of these propagators can be explicitly computed even for arbitrary initial conditions. They are found to be damped by an exponential cutoff whose expression is directly related to the moment generating function of the one-dimensional displacement field. This extends what had been established for multipoint propagators for Gaussian initial conditions. Numerical forms of the cutoff are shown for the so-called local model of PNG.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据