4.7 Article

Spectral dimension of a quantum universe

期刊

PHYSICAL REVIEW D
卷 81, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.81.104040

关键词

-

资金

  1. Helmholtz International Center
  2. Government of Canada through Industry Canada
  3. Province of Ontario through the Ministry of Research Innovation

向作者/读者索取更多资源

In this paper, we calculate in a transparent way the spectral dimension of a quantum spacetime, considering a diffusion process propagating on a fluctuating manifold. To describe the erratic path of the diffusion, we implement a minimal length by averaging the graininess of the quantum manifold in the flat space case. As a result we obtain that, for large diffusion times, the quantum spacetime behaves like a smooth differential manifold of discrete dimension. On the other hand, for smaller diffusion times, the spacetime looks like a fractal surface with a reduced effective dimension. For the specific case in which the diffusion time has the size of the minimal length, the spacetime turns out to have a spectral dimension equal to 2, suggesting a possible renormalizable character of gravity in this regime. For smaller diffusion times, the spectral dimension approaches zero, making any physical interpretation less reliable in this extreme regime. We extend our result to the presence of a background field and curvature. We show that in this case the spectral dimension has a more complicated relation with the diffusion time, and conclusions about the renormalizable character of gravity become less straightforward with respect to what we found with the flat space analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据