4.7 Article

Constraining fundamental physics with future CMB experiments

期刊

PHYSICAL REVIEW D
卷 82, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.82.123504

关键词

-

资金

  1. ASI [I/016/07/0]
  2. NSF [0707731]
  3. NASA theory Grant [NNX087AH30G]
  4. Direct For Mathematical & Physical Scien
  5. Division Of Astronomical Sciences [0707731] Funding Source: National Science Foundation

向作者/读者索取更多资源

The Planck experiment will soon provide a very accurate measurement of cosmic microwave background anisotropies. This will let cosmologists determine most of the cosmological parameters with unprecedented accuracy. Future experiments will improve and complement the Planck data with better angular resolution and better polarization sensitivity. This unexplored region of the CMB power spectrum contains information on many parameters of interest, including neutrino mass, the number of relativistic particles at recombination, the primordial helium abundance, and the injection of additional ionizing photons by dark matter self-annihilation. We review the imprint of each parameter on the CMB and forecast the constraints achievable by future experiments by performing a Monte Carlo analysis on synthetic realizations of simulated data. We find that next generation satellite missions such as CMBPol could provide valuable constraints with a precision close to that expected in current and near future laboratory experiments. Finally, we discuss the implications of this intersection between cosmology and fundamental physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据