4.7 Article

Binary black hole merger in the extreme-mass-ratio limit: A multipolar analysis

期刊

PHYSICAL REVIEW D
卷 81, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.81.084056

关键词

-

资金

  1. DFG

向作者/读者索取更多资源

Building up on previous work, we present a new calculation of the gravitational wave emission generated during the transition from quasicircular inspiral to plunge, merger, and ringdown by a binary system of nonspinning black holes, of masses m(1) and m(2), in the extreme mass ratio limit, m(1)m(2) << (m(1) + m(2))(2). The relative dynamics of the system is computed without making any adiabatic approximation by using an effective one body (EOB) description, namely, by representing the binary by an effective particle of mass mu = m(1)m(2)/(m(1) + m(2)) moving in a (quasi-)Schwarzschild background of mass M = m(1) + m(2) and submitted to an O(nu) 5PN-resummed analytical radiation reaction force, with nu = mu/M. The gravitational wave emission is calculated via a multipolar Regge-Wheeler-Zerilli-type perturbative approach (valid in the limit nu << 1). We consider three mass ratios, nu = {10(-2); 10(-3); 10(-4)}, and we compute the multipolar waveform up to l = 8. We estimate energy and angular momentum losses during the quasiuniversal and quasigeodesic part of the plunge phase and we analyze the structure of the ringdown. We calculate the gravitational recoil, or kick,'' imparted to the merger remnant by the gravitational wave emission and we emphasize the importance of higher multipoles to get a final value of the recoil v/(c nu(2)) = 0.0446. We finally show that there is an excellent fractional agreement (similar to 10(-3)) ( even during the plunge) between the 5PN EOB analytically resummed radiation reaction flux and the numerically computed gravitational wave angular momentum flux. This is a further confirmation of the aptitude of the EOB formalism to accurately model extreme-mass-ratio inspirals, as needed for the future space-based LISA gravitational wave detector.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据