4.7 Article

Extremal black hole/CFT correspondence in (gauged) supergravities

期刊

PHYSICAL REVIEW D
卷 79, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.79.084018

关键词

-

资金

  1. DOE [DE-FG03-95ER40917, DOE-EY-7602-3071]
  2. Fay R. and Eugene L. Langberg Endowed Chair

向作者/读者索取更多资源

We extend the investigation of the recently proposed Kerr/conformal field theory correspondence to large classes of rotating black hole solutions in gauged and ungauged supergravities. The correspondence, proposed originally for four-dimensional Kerr black holes, asserts that the quantum states in the near-horizon region of an extremal rotating black hole are holographically dual to a two-dimensional chiral theory whose Virasoro algebra arises as an asymptotic symmetry of the near-horizon geometry. In fact, in dimension D there are [(D-1)/2] commuting Virasoro algebras. We consider a general canonical class of near-horizon geometries in arbitrary dimension D, and show that in any such metric the [(D-1)/2] central charges each imply, via the Cardy formula, a microscopic entropy that agrees with the Bekenstein-Hawking entropy of the associated extremal black hole. In the remainder of the paper we show for most of the known rotating black hole solutions of gauged supergravity, and for the ungauged supergravity solutions with four charges in D=4 and three charges in D=5, that their extremal near-horizon geometries indeed lie within the canonical form. This establishes that, in all these examples, the microscopic entropies of the dual conformal field theories agree with the Bekenstein-Hawking entropies of the extremal rotating black holes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据