4.7 Article

Binary black hole evolutions of approximate puncture initial data

期刊

PHYSICAL REVIEW D
卷 80, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.80.024008

关键词

-

资金

  1. NSF [PHY-0354821, PHY-0653443, PHY-0244788, PHY0555436, PHY-0801213, PHY-0114375]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Physics [0855423] Funding Source: National Science Foundation

向作者/读者索取更多资源

Approximate solutions to the Einstein field equations are valuable tools to investigate gravitational phenomena. An important aspect of any approximation is to investigate and quantify its regime of validity. We present a study that evaluates the effects that approximate puncture initial data, based on skeleton solutions to the Einstein constraints as proposed by [G. Faye, P. Jaranowski, and G. Schaumlfer, Phys. Rev. D 69, 124029 (2004).], have on numerical evolutions. Using data analysis tools, we assess the effectiveness of these constraint-violating initial data for both initial and advanced LIGO and show that the matches of waveforms from skeleton data with the corresponding waveforms from constraint-satisfying initial data are greater than or similar to 0.97 when the total mass of the binary is greater than or similar to 40M(circle dot). In addition, we demonstrate that the differences between the skeleton and the constraint-satisfying initial data evolutions, and thus waveforms, are due to negative Hamiltonian constraint violations present in the skeleton initial data located in the vicinity of the punctures. During the evolution, the skeleton data develops both Hamiltonian and momentum constraint violations that decay with time, with the binary system relaxing to a constraint-satisfying solution with black holes of smaller mass and thus different dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据