4.7 Article

Effective theory of Dirac dark matter

期刊

PHYSICAL REVIEW D
卷 79, 期 9, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.79.095007

关键词

-

资金

  1. Department of Energy [DE-AC02-76SF00515, DE-FG02-96ER40969]

向作者/读者索取更多资源

A stable Dirac fermion with four-fermion interactions to leptons suppressed by a scale Lambda similar to 1 TeV is shown to provide a viable candidate for dark matter. The thermal relic abundance matches cosmology, while nuclear recoil direct detection bounds are automatically avoided in the absence of (large) couplings to quarks. The annihilation cross section in the early Universe is the same as the annihilation in our Galactic neighborhood. This allows Dirac fermion dark matter to naturally explain the positron ratio excess observed by PAMELA with a minimal boost factor, given present astrophysical uncertainties. We use the GALPROP program for propagation of signal and background; we discuss in detail the uncertainties resulting from the propagation parameters and, more importantly, the injected spectra. Fermi/GLAST has an opportunity to see a feature in the gamma-ray spectrum at the mass of the Dirac fermion. The excess observed by ATIC/PPB-BETS may also be explained with Dirac dark matter that is heavy. A super-symmetric model with a Dirac bino provides a viable UV model of the effective theory. The dominance of the leptonic operators, and thus the observation of an excess in positrons and not in antiprotons, is naturally explained by the large hypercharge and low mass of sleptons as compared with squarks. Minimizing the boost factor implies the right- handed selectron is the lightest slepton, which is characteristic of our model. Selectrons (or sleptons) with mass less than a few hundred GeV are an inescapable consequence awaiting discovery at the LHC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据