4.7 Article

Stellar black holes and the origin of cosmic acceleration

期刊

PHYSICAL REVIEW D
卷 80, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.80.043513

关键词

-

资金

  1. Government of Canada
  2. Ministry of Research Innovation

向作者/读者索取更多资源

The discovery of cosmic acceleration has presented a unique challenge for cosmologists. As observational cosmology forges ahead, theorists have struggled to make sense of a standard model that requires extreme fine-tuning. This challenge is known as the cosmological constant problem. The theory of gravitational aether is an alternative to general relativity that does not suffer from this fine-tuning problem, as it decouples the quantum field theory vacuum from geometry, while remaining consistent with other tests of gravity. In this paper, we study static black hole solutions in this theory and show that it manifests a UV-IR coupling: Aether couples the space-time metric close to the black hole horizon, to metric at infinity. We then show that using the trans-Planckian ansatz (as a quantum gravity effect) close to the black hole horizon, leads to an accelerating cosmological solution, far from the horizon. Interestingly, this acceleration matches current observations for stellar-mass black holes. Based on our current understanding of the black hole accretion history in the Universe, we then make a prediction for how the effective dark energy density should evolve with redshift, which can be tested with future dark energy probes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据