4.7 Review

High-energy cosmic-ray nuclei from high- and low-luminosity gamma-ray bursts and implications for multimessenger astronomy

期刊

PHYSICAL REVIEW D
卷 78, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.78.023005

关键词

-

向作者/读者索取更多资源

Gamma-ray bursts (GRBs) are one of the candidates of ultrahigh-energy (greater than or similar to 10(18.5) eV) cosmic-ray (UHECR) sources. We investigate high-energy cosmic-ray acceleration including heavy nuclei in GRBs by using Geant 4, and discuss its various implications, taking both high-luminosity (HL) and low-luminosity (LL) GRBs into account. This is because LL GRBs may also make a significant contribution to the observed UHECR flux if they form a distinct population. We show that not only protons, but also heavier nuclei can be accelerated up to ultrahigh energies in the internal, (external) reverse, and forward shock models. We also show that the condition for ultrahigh-energy heavy nuclei such as iron to survive is almost the same as that for similar to TeV gamma rays to escape from the source and for high-energy neutrinos not to be much produced. The multimessenger astronomy by neutrino and GeV-TeV gamma-ray telescopes such as IceCube and KM3Net, GLAST and MAGIC will be important to see whether GRBs can be accelerators of ultrahigh-energy heavy nuclei. We also demonstrate expected spectra of high-energy neutrinos and gamma rays, and discuss their detectabilities. In addition, we discuss implications of the GRB-UHECR hypothesis. We point out, since the number densities of HL GRBs and LL GRBs are quite different, its determination by UHECR observations is also important.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据