4.7 Article

Constraining neutrino masses with the integrated-Sachs-Wolfe-galaxy correlation function

期刊

PHYSICAL REVIEW D
卷 77, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.77.063505

关键词

-

向作者/读者索取更多资源

Temperature anisotropies in the cosmic microwave background (CMB) are affected by the late integrated Sachs-Wolfe (1ISW) effect caused by any time variation of the gravitational potential on linear scales. Dark energy is not the only source of 1ISW, since massive neutrinos induce a small decay of the potential on small scales during both matter and dark energy domination. In this work, we study the prospect of using the cross correlation between CMB and galaxy-density maps as a tool for constraining the neutrino mass. On the one hand massive neutrinos reduce the cross-correlation spectrum because free-streaming slows down structure formation; on the other hand, they enhance it through their change in the effective linear growth. We show that in the observable range of scales and redshifts, the first effect dominates, but the second one is not negligible. We carry out an error forecast analysis by fitting some mock data inspired by the Planck satellite, Dark Energy Survey (DES) and Large Synoptic Survey Telescope (LSST). The inclusion of the cross correlation data from Planck and LSST increases the sensitivity to the neutrino mass m(v) by 38% (and to the dark energy equation of state w by 83%) with respect to Planck alone. The correlation between Planck and DES brings a far less significant improvement. This method is not potentially as good for detecting m(v) as the measurement of galaxy, cluster, or cosmic shear power spectra, but since it is independent and affected by different systematics, it remains potentially interesting if the total neutrino mass is of the order of 0.2 eV; if instead it is close to the lower bound from atmospheric oscillations, m(v) similar to 0: 05 eV, we do not expect the ISW-galaxy correlation to be ever sensitive to m(v).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据