4.7 Article

Model of dark matter and dark energy based on gravitational polarization

期刊

PHYSICAL REVIEW D
卷 78, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.78.024031

关键词

-

向作者/读者索取更多资源

A model of dark matter and dark energy based on the concept of gravitational polarization is investigated. We propose an action in standard general relativity for describing, at some effective or phenomenological level, the dynamics of a dipolar medium, i.e. one endowed with a dipole moment vector, and polarizable in a gravitational field. Using first-order cosmological perturbations, we show that the dipolar fluid is undistinguishable from standard dark energy (a cosmological constant Lambda) plus standard dark matter (a pressureless perfect fluid), and therefore benefits from the successes of the Lambda-cold-dark-matter scenario at cosmological scales. Invoking an argument of weak clusterization of the mass distribution of dipole moments, we find that the dipolar dark matter reproduces the phenomenology of the modified Newtonian dynamics at galactic scales. The dipolar medium action naturally contains a cosmological constant, and we show that if the model is to come from some fundamental underlying physics, the cosmological constant Lambda should be of the order of a(0)(2)/c(4), where a(0) denotes the modified Newtonian dynamics constant acceleration scale, in good agreement with observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据