4.7 Article

Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries

期刊

PHYSICAL REVIEW D
卷 78, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.78.044039

关键词

-

向作者/读者索取更多资源

The effective-one-body (EOB) formalism contains several flexibility parameters, notably a(5), upsilon(pole) and (a) over bar (RR). We show here how to jointly constrain the values of these parameters by simultaneously best-fitting the EOB waveform to two, independent, numerical relativity (NR) simulations of inspiralling and/or coalescing binary black-hole systems: published Caltech-Cornell inspiral data (considered for gravitational wave frequencies Mw <= 0.1) on one side, and newly computed coalescence data on the other side. The resulting, approximately unique, best-fit EOB waveform is then shown to exhibit excellent agreement with NR coalescence data for several mass ratios. The dephasing between this best-fit EOB waveform and published Caltech-Cornell inspiral data is found to vary between -0.0014 and +0.0008 radians over a time span of similar to 2464M up to gravitational wave frequency Mw = 0.1, and between +0.0013 and -0.0185 over a time span of 96M after Mw = 0.1 up to Mw = 0. 1565. The dephasings between EOB and the new coalescence data are found to be smaller than: (i) +/- 0.025 radians over a time span of 730M (11 cycles) up to merger, in the equal-mass case,and (ii) +/- 0.05 radians over a time span of about 950M ( 17 cycles) up to merger in the 2:1 mass-ratio case. These new results corroborate the aptitude of the EOB formalism to provide accurate representations of general relativistic waveforms, which are needed by Currently operating gravitational wave detectors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据