4.7 Article

Luminosity distance in Swiss cheese cosmology with randomized voids. I. Single void size

期刊

PHYSICAL REVIEW D
卷 78, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.78.083511

关键词

-

资金

  1. NSF [PHY-0457200, PHY-0555216]
  2. NASA [NNX08AH27G]

向作者/读者索取更多资源

Recently, there have been suggestions that the Type Ia supernova data can be explained using only general relativity and cold dark matter with no dark energy. In Swiss cheese models of the Universe, the standard Friedmann-Robertson-Walker picture is modified by the introduction of mass-compensating spherical inhomogeneities, typically described by the Lemaitre-Tolman-Bondi metric. If these inhomogeneities correspond to underdense cores surrounded by mass-compensating overdense shells, then they can modify the luminosity distance-redshift relation in a way that can mimic accelerated expansion. It has been argued that this effect could be large enough to explain the supernova data without introducing dark energy or modified gravity. We show that the large apparent acceleration seen in some models can be explained in terms of standard weak field gravitational lensing together with insufficient randomization of void locations. The underdense regions focus the light less than the homogeneous background, thus dimming supernovae in a way that can mimic the effects of acceleration. With insufficient randomization of the spatial location of the voids and of the lines of sight, coherent defocusing can lead to anomalously large demagnification effects. We show that a proper randomization of the voids and lines of sight reduces the effect to the point that it can no longer explain the supernova data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据