4.6 Article

Combinatorial screening for new materials in unconstrained composition space with machine learning

期刊

PHYSICAL REVIEW B
卷 89, 期 9, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.89.094104

关键词

-

资金

  1. National Defense Science and Engineering Graduate Fellowship
  2. DOE [DE-FG02-07ER46433, DE-SC0005340, DE-SC0007456]
  3. Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center
  4. US Department of Energy, Office of Science, Office of Basic Energy Sciences
  5. NSF [CCF-1029166, OCI-1144061]
  6. AFOSR [FA9550-12-1-0458]
  7. Revolutionary Materials for Solid State Energy Conversion, an Energy Frontier Research Center
  8. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC00010543]
  9. Office of Basic Energy Sciences [DE-FG02-98ER45721]
  10. U.S. Department of Energy (DOE) [DE-SC0005340, DE-FG02-98ER45721] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Typically, computational screens for new materials sharply constrain the compositional search space, structural search space, or both, for the sake of tractability. To lift these constraints, we construct a machine learning model from a database of thousands of density functional theory (DFT) calculations. The resulting model can predict the thermodynamic stability of arbitrary compositions without any other input and with six orders of magnitude less computer time than DFT. We use this model to scan roughly 1.6 million candidate compositions for novel ternary compounds (A(x)B(y)C(z)), and predict 4500 new stable materials. Our method can be readily applied to other descriptors of interest to accelerate domain-specific materials discovery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据