4.6 Article

Enhanced thermoelectric performance of phosphorene by strain-induced band convergence

期刊

PHYSICAL REVIEW B
卷 90, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.085433

关键词

-

资金

  1. National Key Basic Research [2011CBA00111]
  2. National Nature Science Foundation of China [11274311]
  3. Joint Funds of the National Natural Science Foundation of China
  4. Chinese Academy of Sciences' Large-Scale Scientific Facility [U1232139]
  5. Anhui Provincial Natural Science Foundation [1408085MA11]
  6. China Postdoctoral Science Foundation [2014M550352]

向作者/读者索取更多资源

The newly emerging monolayer phosphorene was recently predicted to be a promising thermoelectric material. In this work, we propose to further enhance the thermoelectric performance of phosphorene using the strain-induced band convergence. The effect of the uniaxial strain on the thermoelectric properties of phosphorene was investigated by using the first-principles calculations combined with the semiclassical Boltzmann theory. When the zigzag-direction strain is applied, the Seebeck coefficient and electrical conductivity in the zigzag direction can simultaneously be greatly enhanced at the critical strain of 5%, at which the band convergence is achieved. The largest ZT value of 1.65 at 300 K is then conservatively estimated by using the bulk lattice thermal conductivity. When the armchair-direction strain of 8% is applied, the room-temperature ZT value can reach 2.12 in the armchair direction of phosphorene. Our results indicate that strain-induced band convergence could be an effective method to enhance the thermoelectric performance of phosphorene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据