4.6 Article

Atomic mechanism of internal friction in a model metallic glass

期刊

PHYSICAL REVIEW B
卷 90, 期 14, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.144201

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [FOR 1394]

向作者/读者索取更多资源

Internal friction (IF) describes the ability of materials to damp out mechanical oscillations. It is a crucial engineering parameter and also conveys unique microscopic information about structural defects, transport phenomena, and phase transformations in solids. While IF predominately results from lattice defects in crystalline materials, the origin of IF remains unclear in disordered materials, like metallic glasses. In this paper, we study the atomic rearrangements that govern IF in a model metallic glass, via numerical simulations of dynamical mechanical spectroscopy together with structural analysis. We identify cooperative and avalanchelike thermal-driven excitations as an underlying mechanism and demonstrate a linearlike relation between the concentrations of these excitations and the values of IF. Structurally, these excitations can be hindered, and thus suppress IF, by slow atoms that usually associate with full icosahedral symmetry. Our results also provide practical guides in tuning IF in metallic glasses from atomistic perspectives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据