4.6 Article

Spontaneous strains and gap in graphene on boron nitride

期刊

PHYSICAL REVIEW B
卷 90, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.075428

关键词

-

资金

  1. Spanish Ministry of Economy (MINECO) [FIS2011-23713, PIB2010BZ-00512]
  2. European Research Council [290846]
  3. European Commission [CNECT-ICT-604391]

向作者/读者索取更多资源

The interaction between a graphene layer and a hexagonal boron nitride (hBN) substrate induces lateral displacements and strains in the graphene layer. The displacements lead to the appearance of commensurate regions and the existence of an average gap in the electronic spectrum of graphene. We present a simple, but realistic, model, with which the displacements, strains, and spectral gap can be derived analytically from the adhesion forces between hBN and graphene. When the lattice axes of graphene and the substrate are aligned, strains reach a value of the order of 2%, leading to effective magnetic fields above 100 T. The combination of strains and induced scalar potential gives a sizable contribution to the electronic gap. Commensuration effects are negligible due to the large stiffness of graphene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据