4.6 Article

Symmetry breaking and Landau quantization in topological crystalline insulators

期刊

PHYSICAL REVIEW B
卷 90, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.035402

关键词

-

资金

  1. P. A. Lee [NSF DMR 1104498]
  2. DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0010526]

向作者/读者索取更多资源

In the recently discovered topological crystalline insulators SnTe and Pb1-x Sn-x (Te, Se), crystal symmetry and electronic topology intertwine to create topological surface states with many interesting features including Lifshitz transition, Van-Hove singularity, and fermion mass generation. These surface states are protected by mirror symmetry with respect to the (110) plane. In this work we present a comprehensive study of the effects of different mirror-symmetry-breaking perturbations on the (001) surface band structure. Pristine (001) surface states have four branches of Dirac fermions at low energy. We show that ferroelectric-type structural distortion generates a mass and gaps out some or all of these Dirac points, while strain shifts Dirac points in the Brillouin zone. An in-planemagnetic field leaves the surface state gapless, but introduces asymmetry between Dirac points. Finally, an out-of-plane magnetic field leads to discrete Landau levels. We show that the Landau level spectrum has an unusual pattern of degeneracy and interesting features due to the unique underlying band structure. This suggests that Landau level spectroscopy can detect and distinguish between different mechanisms of symmetry breaking in topological crystalline insulators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据