4.6 Article

Kitaev-Heisenberg models for iridates on the triangular, hyperkagome, kagome, fcc, and pyrochlore lattices

期刊

PHYSICAL REVIEW B
卷 89, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.89.014414

关键词

-

资金

  1. NSF [DGE 1106400, PHY11-25915]
  2. ARO MURI [W911NF-12-0461]

向作者/读者索取更多资源

The Kitaev-Heisenberg (KH) model has been proposed to capture magnetic interactions in iridate Mott insulators on the honeycomb lattice. We show that analogous interactions arise in many other geometries built from edge-sharing IrO6 octahedra, including the pyrochlore and hyperkagome lattices relevant to Ir2O4 and Na4Ir3O8, respectively. The Kitaev spin liquid exact solution does not generalize to these lattices. However, a different, exactly soluble point of the honeycomb lattice KH model, obtained by a four-sublattice transformation to a ferromagnet, generalizes to all of these lattices and even to certain additional further neighbor Heisenberg couplings. A Klein four-group congruent to Z(2) x Z(2) structure is associated with this mapping (hence Klein duality). A finite lattice admits the duality if a simple geometrical condition is met. This duality predicts fluctuation-free ordered states on these different 2D and 3D lattices, which are analogues of the honeycomb lattice KH stripy order. This result is used in conjunction with a semiclassical Luttinger-Tisza approximation to obtain phase diagrams for KH models on the different lattices. We also discuss a Majorana fermion based mean-field theory at the Kitaev point, which is exact on the honeycomb lattice, for the KH models on the different lattices. We attribute the rich behavior of these models to the interplay of geometric frustration and frustration induced by spin-orbit coupling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据