4.6 Article

Self-consistent relativistic band structure of the CH3NH3PbI3 perovskite

期刊

PHYSICAL REVIEW B
卷 90, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.045207

关键词

-

资金

  1. European Project NANOCIS (FP7-PEOPLE-IRSES)
  2. DEF-HYDFT (SOPHIA project)

向作者/读者索取更多资源

The electronic structure and properties of the orthorhombic phase of the CH3NH3PbI3 perovskite are computed with density functional theory. The structure, optimized using a van der Waals functional, reproduces closely the unit cell volume. The experimental band gap is reproduced accurately by combining spin-orbit effects and a hybrid functional in which the fraction of exact exchange is tuned self-consistently to the optical dielectric constant. Including spin-orbit coupling strongly reduces the anisotropy of the effective mass tensor, predicting a low electron effective mass in all crystal directions. The computed binding energy of the unrelaxed exciton agrees with experimental data, and the values found imply a fast exciton dissociation at ambient temperature. Also polaron masses for the separated carriers are estimated. The values of all these parameters agree with recent indications that fast dynamics and large carrier diffusion lengths are key in the high photovoltaic efficiencies shown by these materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据