4.6 Article

Odd-parity superconductivity in Weyl semimetals

期刊

PHYSICAL REVIEW B
卷 89, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.89.014506

关键词

-

资金

  1. University of California at Riverside
  2. NCTS in Taiwan

向作者/读者索取更多资源

Unconventional superconducting states of matter are realized in the presence of strong spin-orbit coupling. In particular, nondegenerate bands can support odd-parity superconductivity with rich topological content. Here we study whether this is the case for Weyl semimetals. These are systems whose low-energy sector, in the absence of interactions, is described by linearly dispersing chiral fermions in three dimensions. The energy spectrum has nodes at an even number of points in the Brillouin zone. Consequently both intranodal finite momentum pairing and internodal BCS superconductivity are allowed. For local attractive interaction the finite momentum pairing state with chiral p-wave symmetry is found to be most favorable at finite chemical potential. The state is an analog of the superfluid He-3 A phase, with Cooper pairs having finite center-of-mass momentum. For chemical potential at the node the state is preempted by a fully gapped charge density wave. For nonlocal attraction the BCS state wins out for all values of the chemical potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据