4.6 Article

Green's function studies of phonon transport across Si/Ge superlattices

期刊

PHYSICAL REVIEW B
卷 89, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.89.235307

关键词

-

资金

  1. S3TEC, an Energy Frontier Research Center
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-FG02-09ER46577]

向作者/读者索取更多资源

Understanding and manipulating coherent phonon transport in solids is of interest both for enhancing the fundamental understanding of thermal transport as well as for many practical applications, including thermoelectrics. In this study, we investigate phonon transmission across Si/Ge superlattices using the Green's function method with first-principles force constants derived from ab initio density functional theory. By keeping the period thickness fixed while changing the number of periods, we show that interface roughness partially destroys coherent phonon transport, especially at high temperatures. The competition between the low-frequency coherent modes and high-frequency incoherent modes leads to an optimum period length for minimum thermal conductivity. To destroy coherence of the low-frequency modes, scattering length scale on the order of period length is required. This finding is useful to guide the design of superlattices to reach even lower thermal conductivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据