4.6 Article

Self-organized topological state in a magnetic chain on the surface of a superconductor

期刊

PHYSICAL REVIEW B
卷 90, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.085124

关键词

-

资金

  1. NSERC
  2. CIfAR

向作者/读者索取更多资源

Electronic states associated with a chain of magnetic adatoms on the surface of an ordinary s-wave superconductor have been shown theoretically to form a one-dimensional (1D) topological phase with unpaired Majorana fermions bound to its ends. In a simple 1D effective model the system exhibits an interesting self-organization property: The pitch of the spiral formed by the adatom magnetic moments tends to adjust itself so that electronically the chain remains in the topological phase whenever such a state is physically accessible. Here we examine the physics underlying this self-organization property in the framework of a more realistic two-dimensional model of a superconducting surface coupled to a 1D chain of magnetic adatoms. Treating both the superconducting order and the magnetic moments self-consistently, we find that the system retains its self-organization property, even if the topological phase extends over a somewhat smaller portion of the phase diagram compared to the 1D model. We also study the effect of imperfections and find that, once established, the topological phase survives moderate levels of disorder.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据