4.6 Article

Photoinduced pure spin-current injection in graphene with Rashba spin-orbit interaction

期刊

PHYSICAL REVIEW B
卷 90, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.035210

关键词

-

资金

  1. Konstanz Center for Applied Photonics (CAP)
  2. Deutsche Forschungsgemeinschaft (DFG) [SFB 767]

向作者/读者索取更多资源

We propose a photoexcitation scheme for pure spin-current generation in graphene subject to a Rashba spin-orbit coupling. Although excitation using circularly polarized light does not result in optical orientation of spins in graphene unless an additional magnetic field is present, we show that excitation with linearly polarized light at normal incidence yields spin-current injection without magnetic field. Spins are polarized within the graphene plane and are displaced in opposite directions, with no net charge displacement. The direction of the spin current is determined by the linear polarization axis of the light, and the injection rate is proportional to the intensity. The technique is tunable via an applied bias voltage and is accessible over a wide frequency range. We predict a spin-current polarization as high as 75% for photon frequencies comparable to the Rashba frequency. Spin-current injection via optical methods removes the need for ferromagnetic contacts, which have been identified as a possible source of spin scattering in electrical spin injection in graphene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据