4.6 Article

Lasing at the band edges of plasmonic lattices

期刊

PHYSICAL REVIEW B
卷 90, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.155452

关键词

-

资金

  1. Netherlands Organization for Scientific Research (NWO)
  2. NWO-Vidi grant
  3. NanoNextNL, a microtechnology and nanotechnology consortium of the Government of the Netherlands

向作者/读者索取更多资源

We report room-temperature lasing in two-dimensional diffractive lattices of silver and gold plasmon particle arrays embedded in a dye-doped polymer that acts both as waveguide and gain medium. As compared to conventional dielectric distributed feedback (DFB) lasers, a central question is how the underlying band structure from which lasing emerges is modified by both the much stronger scattering and the disadvantageous loss of metal. We use spectrally resolved back-focal plane imaging to measure the wavelength and angle dependence of emission below and above threshold, thereby mapping the band structure. We find that, for silver particles, the band structure is strongly modified compared to dielectric reference DFB lasers since the strong scattering gives large stop gaps. In contrast, gold particles scatter weakly and absorb strongly, so that thresholds are higher, but the band structure is not strongly modified. The experimental findings are supported by finite element and Fourier modal method calculations of the single-particle scattering strength and lattice extinction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据