4.6 Article

Chiral symmetry breaking and the quantum Hall effect in monolayer graphene

期刊

PHYSICAL REVIEW B
卷 90, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.201409

关键词

-

资金

  1. NSF-JQI-PFC
  2. LPS-CMTC
  3. NSERC (Canada)
  4. Direct For Mathematical & Physical Scien
  5. Division Of Physics [1430094] Funding Source: National Science Foundation

向作者/读者索取更多资源

Monolayer graphene in a strong magnetic field exhibits quantum Hall states at filling fractions nu = 0 and nu = +/- 1 that are not explained within a picture of noninteracting electrons. We propose that these states arise from interaction-induced chiral symmetry-breaking orders. We argue that when the chemical potential is at the Dirac point, weak on-site repulsion supports an easy-plane antiferromagnet state, which simultaneously gives rise to ferromagnetism oriented parallel to the magnetic field direction, whereas for |nu| = 1 easy-axis antiferromagnet and charge-density-wave orders coexist. We perform self-consistent calculations of the magnetic field dependence of the activation gap for the nu = 0 and |nu| = 1 states and obtain excellent agreement with recent experimental results. Implications of our study for fractional Hall states in monolayer graphene are highlighted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据