4.6 Article

Antireflection structure for an effective refractive index near-zero medium in a two-dimensional photonic crystal

期刊

PHYSICAL REVIEW B
卷 90, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.115412

关键词

-

向作者/读者索取更多资源

Two-dimensional dielectric photonic crystals (PCs) having periodic air hole cylinders, when designed properly, exhibit near-zero effective refractive index and the wave impedance is dependent on local observation points. The incident wave is mostly reflected at the PC-air interface due to large impedance mismatch. We show, analytically and numerically, that even in the near-zero effective refractive index case the reflection can be suppressed by utilizing an antireflection structure consisting of a PC with the same lattice constant but a different radius for the periodic air hole cylinders. The antireflection PC must be truncated at properly selected cross sections in order to possess the same impedance at cross sections with the host PC and with the air structure. An analytical model combined with the plane-wave expansion method captures the antireflection behavior obtained by the full wave simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据