4.6 Article

Capacitance of graphene in aqueous electrolytes: The effects of dielectric saturation of water and finite size of ions

期刊

PHYSICAL REVIEW B
卷 90, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.125415

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

We present a theoretical model for electrolytically top-gated graphene, in which we analyze the effects of dielectric saturation of water due to possibly strong electric fields near the surface of a highly charged graphene, as well as the steric effects due to the finite size of salt ions in an aqueous electrolyte. By combining two well-established analytical models for those two effects, we show that the total capacitance of the solution-gated graphene is dominated by its quantum capacitance for gating potentials less than or similar to 1 V, which is the range of primary interest for most sensor applications of graphene. On the other hand, at the potentials greater than or similar to 1 V the total capacitance is dominated by a universal capacitance of the electric double layer in the electrolyte, which exhibits a dramatic decrease of capacitance with increasing gating potential due to the interplay of a fully saturated dielectric constant of water and ion crowding near graphene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据