4.6 Article

Unambiguous Gibbs dividing surface for nonequilibrium finite-width interface: Static equivalence approach

期刊

PHYSICAL REVIEW B
卷 89, 期 9, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.89.094107

关键词

-

资金

  1. NSF [CMMI-0969143]
  2. ONR [N00014-12-1-0525]
  3. ARO [W911NF-12-1-0340]
  4. DARPA [W31P4Q-13-1-0010]
  5. Iowa State University
  6. Directorate For Engineering
  7. Div Of Civil, Mechanical, & Manufact Inn [0969143] Funding Source: National Science Foundation

向作者/读者索取更多资源

The definition of all properties of the nonequilibrium interface depends on the choice of the position of the dividing surface. However, the definition of its position has been an unsolved problem for more than a century. A missing principle to unambiguously determine the position of the Gibbs' dividing surface is found: the principle of static equivalence. A sharp interface (dividing surface) is statically equivalent to a nonequilibrium finite-width interface with distributed tensile stresses if it possesses (a) the same resultant force, equal to the interface energy, and (b) the same moment, which is zero about the interface position. Each of these conditions determines the position of a sharp interface, which may be contradictory. This principle is applied to resolve another basic problem: the development of a phase field approach to an interface motion that includes an expression for interface stresses, which are thermodynamically consistent, and consistent with a sharp-interface limit. Using an analytical solution for a curved propagating interface, it is shown that both conditions determine the same dividing surface, i.e., the theory is self-consistent. The expression for the interface energy is also consistent with the expression for the velocity of the curved sharp interface. Applications to more complex interfaces that support elastic stresses are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据