4.6 Article

Quantum kinetic derivation of the nonequilibrium Gross-Pitaevskii equation for nonresonant excitation of microcavity polaritons

期刊

PHYSICAL REVIEW B
卷 89, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.89.155302

关键词

-

资金

  1. Research Networking Programme POLATOM of the European Science Foundation
  2. National Foundation for Science and Technology Development (NAFOSTED)

向作者/读者索取更多资源

The space and time dependent nonequilibrium Keldysh-Green functions are employed to derive the scattering rates between the condensed microcavity polaritons described by a Gross-Pitaevskii equation and an uncondensed higher lying exciton reservoir. Slowly varying center coordinates and rapidly varying relative coordinates are assumed. For particle-particle and particle-phonon interactions the scattering rates which provide gain to the condensate are calculated explicitly. These processes result in scattering rates which are quadratic and linear in the density of reservoir excitons, respectively. The resulting quantum Boltzmann equation for the reservoir is simplified by assuming local thermal equilibrium to rate equations for the exciton density and their temperature. Using the microscopically calculated (not phenomenologically chosen) transition amplitudes for CdTe microcavity polaritons we demonstrate that our model is able to describe the spontaneous pattern formation for a ring-shaped nonresonant excitation as seen in recent experiments

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据