4.6 Article

Direct calculation of exciton binding energies with time-dependent density-functional theory

期刊

PHYSICAL REVIEW B
卷 87, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.87.195204

关键词

-

资金

  1. National Science Foundation [DMR-1005651]
  2. Division Of Materials Research
  3. Direct For Mathematical & Physical Scien [1005651] Funding Source: National Science Foundation

向作者/读者索取更多资源

Excitons are electron-hole pairs appearing below the band gap in insulators and semiconductors. They are vital to photovoltaics, but are hard to obtain with time-dependent density-functional theory (TDDFT), since most standard exchange-correlation (xc) functionals lack the proper long-range behavior. Furthermore, optical spectra of bulk solids calculated with TDDFT often lack the required resolution to distinguish discrete, weakly bound excitons from the continuum. We adapt the Casida equation formalism for molecular excitations to periodic solids, which allows us to obtain exciton binding energies directly. We calculate exciton binding energies for both small-and large-gap semiconductors and insulators, study the recently proposed bootstrap xc kernel [S. Sharma et al., Phys. Rev. Lett. 107, 186401 (2011)], and extend the formalism to triplet excitons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据