4.6 Article

Effect of spin-orbit interaction on the optical spectra of single-layer, double-layer, and bulk MoS2

期刊

PHYSICAL REVIEW B
卷 88, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.88.045412

关键词

-

资金

  1. French National Research Agency (ANR) [ANR-09-BLAN-0421-01]
  2. IDRIS supercomputing center, Orsay [091827]

向作者/读者索取更多资源

We present converged ab initio calculations of the optical absorption spectra of single-layer, double-layer, and bulk MoS2. Both the quasiparticle-energy calculations (on the level of the GW approximation) and the calculation of the absorption spectra (on the level of the Bethe-Salpeter equation) explicitly include spin-orbit coupling, using the full spinorial Kohn-Sham wave functions as input. Without excitonic effects, the absorption spectra would have the form of a step function, corresponding to the joint density of states of a parabolic band dispersion in two dimensions. This profile is deformed by a pronounced bound excitonic peak below the continuum onset. The peak is split by spin-orbit interaction in the case of single-layer and (mostly) by interlayer interaction in the case of double-layer and bulk MoS2. The resulting absorption spectra are thus very similar in the three cases, but the interpretation of the spectra is different. Differences in the spectra can be seen in the shape of the absorption spectra at 3 eV where the spectra of the single and double layers are dominated by a strongly bound exciton.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据