4.6 Article

Ultrafast reversal of a Fano resonance in a plasmon-exciton system

期刊

PHYSICAL REVIEW B
卷 88, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.88.075411

关键词

-

资金

  1. National Science Foundation [CHE-1059057]
  2. National Science Foundation Graduate Research Fellowship
  3. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]

向作者/读者索取更多资源

When a two-level quantum dot and a plasmonic metal nanoantenna are resonantly coupled by the electromagnetic near-field, the system can exhibit a Fano resonance, resulting in a transparency dip in the optical spectrum of the coupled system. We calculate the nonlinear response of such a system, for illumination both by continuous-wave and ultrafast pulsed lasers, using both a cavity quantum electrodynamics and a semiclassical coupled-oscillator model. For the experimentally relevant case of thermal broadening of the quantum-dot transition (to meV values consistent with similar to 100 K), we predict that femtosecond pulsed illumination can lead to a reversal of the Fano resonance, with the induced transparency changing into a superscattering spike in the spectrum. This ultrafast reversal is due to a transient change in the phase relationship between the dipoles of the plasmon and exciton. It thus represents a new approach to dynamically control the collective optical properties and coherence of coupled nanoparticle systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据