4.6 Article

Fractional topological superconductor with fractionalized Majorana fermions

期刊

PHYSICAL REVIEW B
卷 87, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.87.035132

关键词

-

向作者/读者索取更多资源

In this paper, we introduce a two-dimensional fractional topological superconductor (FTSC) as a strongly correlated topological state which can be achieved by inducing superconductivity into an Abelian fractional quantum Hall state, through the proximity effect. When the proximity coupling is weak, the FTSC has the same topological order as its parent state and is thus Abelian. However, upon increasing the proximity coupling, the bulk gap of such an Abelian FTSC closes and reopens, resulting in a new topological order: a non-Abelian FTSC. Using several arguments we will conjecture that the conformal field theory (CFT) that describes the edge state of the non-Abelian FTSC is U(1)/Z(2) orbifold theory and use this to write down the ground-state wave function. Further, we predict FTSC based on the Laughlin state at nu = 1/m filling to host fractionalized Majorana zero modes bound to superconducting vortices. These zero modes are non-Abelian quasiparticles, which is evident in their quantum dimension of d(m) = root 2m. Using the multi-quasi-particle wave function based on the edge CFT, we derive the projective braid matrix for the zero modes. Finally, the connection between the non-Abelian FTSCs and the Z(2m) rotor model with a similar topological order is illustrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据