4.6 Article

Random phase approximation applied to solids, molecules, and graphene-metal interfaces: From van der Waals to covalent bonding

期刊

PHYSICAL REVIEW B
卷 87, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.87.075111

关键词

-

资金

  1. Danish Research Council's Sapere Aude Program
  2. Danish National Research Foundation

向作者/读者索取更多资源

The random phase approximation (RPA) is attracting renewed interest as a universal and accurate method for first-principles total energy calculations. The RPA naturally accounts for long-range dispersive forces without compromising accuracy for short-range interactions making the RPA superior to semilocal and hybrid functionals in systems dominated by weak van derWaals or mixed covalent-dispersive interactions. In this work, we present plane-wave-based RPA calculations for a broad collection of systems with bond types ranging from strong covalent to van der Waals. Our main result is the RPA potential energy surfaces of graphene on the Cu(111), Ni(111), Co(0001), Pd(111), Pt(111), Ag(111), Au(111), and Al(111) metal surfaces, which represent archetypical examples of metal-organic interfaces. Comparison with semilocal density approximations and a nonlocal van der Waals functional show that only the RPA captures both the weak covalent and dispersive forces, which are equally important for these systems. We benchmark our implementation in the GPAW electronic structure code by calculating cohesive energies of graphite and a range of covalently bonded solids and molecules as well as the dissociation curves of H2 and H2+. These results show that the RPA with orbitals from the local density approximation suffers from delocalization errors and systematically underestimates covalent bond energies yielding similar or lower accuracy than the Perdew-Burke-Ernzerhof (PBE) functional for molecules and solids, respectively. DOI: 10.1103/PhysRevB.87.075111

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据