4.6 Article

Interplay between interaction and chiral anomaly: Anisotropy in the electrical resistivity of interacting Weyl metals

期刊

PHYSICAL REVIEW B
卷 87, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.87.205133

关键词

-

资金

  1. National Research Foundation of Korea (NRF)
  2. Korea government (MEST) [2012R1A1B3000550]

向作者/读者索取更多资源

We predict that long-range interactions give rise to anisotropy in the electrical resistivity of Weyl metals at low temperatures, where the electrical resistivity becomes much reduced when electric fields are applied to the direction of the momentum vector to connect two paired Weyl points. Performing the renormalization group analysis, we find that the distance between two Weyl points becomes enhanced logarithmically at low temperatures although the coupling constant of such interactions vanishes inverse-logarithmically. Considering the Adler-Bell-Jackiw anomaly, scattering between these two Weyl points becomes suppressed to increase electrical conductivity in the longitudinal direction, counter intuitive in the respect that interactions are expected to reduce metallicity. We also propose that the anomalous contribution in the Hall effect shows the logarithmic enhancement as a function of temperature, originating from the fact that the anomalous Hall coefficient turns out to be proportional to the distance between two paired Weyl points. Correlations with topological constraints allow unexpected and exotic transport properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据