4.6 Article

Elastic excitations in BaTiO3 single crystals and ceramics: Mobile domain boundaries and polar nanoregions observed by resonant ultrasonic spectroscopy

期刊

PHYSICAL REVIEW B
卷 87, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.87.014106

关键词

-

资金

  1. Leverhulme Trust [RG66640, EP/K009702/1]
  2. EPSRC [EP/K009702/1, NE/B 505738/1]
  3. NERC [EP/K009702/1, DMR-1066158]
  4. NSF [EP/K009702/1, DMR-0701558, 0722625, N00014-11-1-0384, N00014-08-1-0915]
  5. ONR [EP/K009702/1, N00014-07-1-0825]
  6. EPSRC [EP/K009702/1] Funding Source: UKRI
  7. NERC [NE/F017081/1] Funding Source: UKRI
  8. Engineering and Physical Sciences Research Council [EP/K009702/1] Funding Source: researchfish
  9. Natural Environment Research Council [NE/F017081/1, NE/B505738/1] Funding Source: researchfish
  10. Division Of Computer and Network Systems
  11. Direct For Computer & Info Scie & Enginr [0959124] Funding Source: National Science Foundation
  12. Division Of Materials Research
  13. Direct For Mathematical & Physical Scien [1066158] Funding Source: National Science Foundation
  14. Office Of The Director
  15. EPSCoR [0918970] Funding Source: National Science Foundation

向作者/读者索取更多资源

The dynamic properties of elastic domain walls in BaTiO3 were investigated using resonance ultrasonic spectroscopy (RUS). The sequence of phase transitions is characterized by minima in the temperature dependence of RUS resonance frequencies and changes in Q factors (resonance damping). Damping is related to the friction of mobile twin boundaries (90 degrees ferroelectric walls) and distorted polar nanoregions (PNRs) in the cubic phase. Damping is largest in the tetragonal phase of ceramic materials but very low in single crystals. Damping is also small in the low-temperature phases of the ceramic sample and slightly increases with decreasing temperature in the single crystal. The phase angle between the real and imaginary part of the dynamic response function changes drastically in the cubic and tetragonal phases and remains constant in the orthorhombic phase. Other phases show a moderate dependence of the phase angle on temperature showing systematic changes of twin microstructures. Mobile twin boundaries (or sections of twin boundaries such as kinks inside twin walls) contribute strongly to the energy dissipation of the forced oscillation while the reduction in effective modulus due to relaxing twin domains is weak. Single crystals and ceramics show strong precursor softening in the cubic phase related to polar nanoregions (PNRs). The effective modulus decreases when the transition point of the cubic-tetragonal transformation is approached from above. The precursor softening follows temperature dependence very similar to recent results from Brillouin scattering. Between the Burns temperature (approximate to 586 K) and T-c at 405 K, we found a good fit of the squared RUS frequency [similar to Delta (C-11 - C-12)] to a Vogel-Fulcher process with an activation energy of similar to 0.2 eV. Finally, some first-principles-based effective Hamiltonian computations were carried out in BaTiO3 single domains to explain some of these observations in terms of the dynamics of the soft mode and central mode. DOI: 10.1103/PhysRevB.87.014106

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据