4.6 Article

Dynamical cluster approximation with continuous lattice self-energy

期刊

PHYSICAL REVIEW B
卷 88, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.88.115101

关键词

-

资金

  1. Office of Science [DE-AC05-00OR22725]
  2. Scientific User Facilities Division, Office of Basic Energy Sciences, of the Department of Energy

向作者/读者索取更多资源

The dynamical cluster approximation (DCA) is a systematic extension beyond the single-site approximation in dynamical mean field theory, to include spatially nonlocal correlations in quantum many-body simulations of strongly correlated systems. We extend the DCA with a continuous lattice self-energy in order to achieve better convergence with cluster size. This method, which we call DCA(+), cures the cluster-shape dependence problems of the DCA, without suffering from causality violations of previous attempts to interpolate the cluster self-energy. A practical approach based on standard inference techniques is given to deduce the continuous lattice self-energy from an interpolated cluster self-energy. We study the pseudogap region of a hole-doped two-dimensional Hubbard model and find that, in the DCA(+) algorithm, the self-energy and pseudogap temperature T* converge monotonously with cluster size. Introduction of a continuous lattice self-energy eliminates artificial long-range correlations and thus significantly reduces the sign problem of the quantum Monte Carlo cluster solver in the DCA(+) algorithm compared to the normal DCA. Simulations with much larger cluster sizes thus become feasible, which, along with the improved convergence in cluster size, raises hope that precise extrapolations to the exact infinite cluster size limit can be reached for other physical quantities as well.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据