4.6 Article

Mean-field theory on a coupled system of ferromagnetism and electronic nematic order

期刊

PHYSICAL REVIEW B
卷 87, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.87.195117

关键词

-

资金

  1. Alexander von Humboldt Foundation
  2. Monkasho

向作者/读者索取更多资源

We analyze an effective model on a square lattice with two types of forward scattering interactions, which, respectively, drive ferromagnetism (FM) and electronic nematic order via a d-wave Pomeranchuk instability (dPI). The FMand dPI in general compete with each other and they are typically separated by a first-order phase boundary in the plane of the chemical potential and temperature. Nevertheless, there is a parameter region where the dPI occurs inside the FM phase, leading to their coexistence. We also study the effect of a magnetic field by choosing a chemical potential where the ground state is paramagnetic without a field. In this case, instead of FM, the dPI competes with a metamagnetic instability. The latter occurs above a threshold strength of the FM interaction and otherwise the dPI is stabilized with a dome-shaped phase diagram in the plane of a magnetic field and temperature. The FM interaction shifts the center of the dome to a lower field, accompanied by a substantial reduction of the field range where the dPI is stabilized and by an extension of the first-order part of the transition line, although the maximal critical temperature does not change. Our results indicate that proximity to the FM instability can be important to understand the experimental phase diagram observed in the bilayer ruthenate Sr3Ru2O7.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据