4.6 Article

Controlling the spatial location of photoexcited electrons in semiconductor CdSe/CdS core/shell nanorods

期刊

PHYSICAL REVIEW B
卷 87, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.87.155427

关键词

-

资金

  1. US Department of Energy, Office of Science, Office of Basic Energy Sciences, [DE-AC02-06CH11357]

向作者/读者索取更多资源

It is commonly assumed that after an electron-hole pair is created in a semiconductor by absorption of a photon the electron and hole rapidly relax to their respective lowest-energy states before recombining with one another. In semiconductor heterostructure nanocrystals, however, intraband relaxation can be inhibited to the point where recombination occurs primarily from an excited state. We demonstrate this effect using time-resolved optical measurements of CdSe/CdS core/shell nanorods. For nanorods with large CdSe cores, an electron photoexcited into the lowest-energy state in the core remains in the core, and an electron photoexcited into an excited state in the CdS shell remains in the shell, until the electron recombines with the hole. This provides a means of controlling the spatial location of photoexcited electrons by excitation energy. The control over electron localization is explained in terms of slow relaxation into the lowest-energy electron state in the nanorods, on time scales slower than electron-hole recombination. The observation of inhibited relaxation suggests that a simple picture of band alignment is insufficient for understanding charge separation in semiconductor heterostructures. DOI: 10.1103/PhysRevB.87.155427

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据